THE USABILITY OF GRAMMATICAL CODES IN MONOLINGUAL LEARNERS’ DICTIONARIES

Marjeta Vrbinc, Alenka Vrbinc *

University of Ljubljana, Ljubljana

Any monolingual learners’ dictionary contains various types of information, but studies have shown that dictionary users do not make full use of these. This also holds true for grammatical information, which was the focus of the research whose results are presented in this article. The experimental investigation included grammatical codes used in five leading British monolingual learners’ dictionaries. Firstly, the test subjects were supposed to decipher the codes, and secondly, their understanding of the explanations of the codes was tested. Two groups of test subjects participated in the study, because we wanted to establish whether there are any differences between groups of respondents. The aim was to establish whether there are any statistically significant differences between the dictionaries tested in terms of transparency and usability of grammatical codes.

Key words: dictionary users, monolingual learners’ dictionaries, grammatical codes, user friendliness

1. INTRODUCTION

Monolingual learners’ dictionaries intended for advanced learners abound with information of various types. The primary function of each dictionary, be it a monolingual or a bilingual one, is most certainly the meaning that is conveyed by means of a definition or a translational equivalent. The meaning is also the type of information that dictionary users place first (Barnhart, 1962, Quirk, 1973, Tomaszczyk, 1979, Béjoint, 1981, Nation, 1990). One other very important element contained in the microstructure of learners’ dictionaries is grammar. Regarding the various means by which information on grammar is included in learners’ dictionaries, the most important development is the trend towards greater transparency in the overall presentation of grammatical information. Much has been said about grammar coding systems in monolingual learners’ dictionaries (Heath, 1982, Cowie, 1984, 1999, Sinclair, 1987, Aarts, 1991, Lemmens and Wekker, 1986, Dalgish,
1995, Jackson, 2002), and several studies have been conducted into the learners’ use of grammatical information (Béjoint, 1981, Nuccorini, 1992, McCorduck, 1993, Tono, 2001, Bogaards and van der Kloot, 2001). One of the most important findings of these studies was that few students make use of, or even understand, the coding schemes in their dictionaries, preferring to glean grammatical information from the examples.

It is true that a trend has developed towards simplification and reduced levels of abstraction in grammatical coding systems in learners’ dictionaries. This is most apparent if we compare subsequent editions of monolingual learners’ dictionaries, especially those of *Oxford Advanced Learner’s Dictionary and Longman Dictionary of Contemporary English*, the learners’ dictionaries with the longest tradition. Certainly, learners’ dictionaries are more sophisticated and more demanding of the user than other dictionaries because they include more information and are based on the assumption that the learner will take the trouble to learn how to use a book that requires some time to master (Landau, 2001: 17).

The findings of previous research prompted us to undertake a research project to examine the interpretability and usability of grammatical codes in learners’ dictionaries for foreign learners. Our initial hypothesis was that students have problems in understanding the codes used in learners’ dictionaries to illustrate grammatical characteristics of different lexical items. We also assumed that students do not regularly check the explanations of the codes in the front matter of the dictionary they consult. Therefore we wanted to find out to what extent the codes are understood without being explained (are they so clear that the explanation is redundant, or are they so difficult that they cannot be understood without an explanation?). Besides these two hypotheses, it was presupposed that there were differences between different types of users, such as English majors and more general dictionary users. Another question we wanted to address is whether there are any differences between the dictionaries tested in terms of transparency and usability of grammatical codes.

2. METHODOLOGY

2.1. Test Subjects

Research was carried out among second- and third-year students of the Faculty of Economics (hereafter referred to as FE) and fourth-year students of the Faculty of Arts (hereafter referred to as FA), Department of English, University of Ljubljana, Slovenia. Altogether the groups comprised 162 respondents. One hundred and fifty-seven respondents (i.e. 96.9 %) speak Slovene as their mother tongue and 5 (i.e. 3.1 %) speak some other language as their mother tongue. The test subjects were asked to give details about the number of years they had been studying English. Most of the respondents (i.e. 69.1 %) had been studying English for 10–12 years, 15.4 % had been studying it for less than 10 years and 15.4 % for more than 12 years. Our test subjects were considered as belonging to a quite homogenous group: most of them attended schools in Slovenia; they had the same number of English lessons per year and covered the same syllabus. For these reasons, we considered it unnecessary for them to undergo a placement test. However, we did enquire about the
students’ average grades in English in grammar school. The majority of students indicated that their average school grade in English was either A or B (37 % stated Grade A, and 34.6 % stated Grade B), 24.1 % had a Grade of C and only 4.3 % a Grade of D.

2.2 Test Design

The questionnaire consisted of two parts: a Dictionary User Profile Form and a Dictionary Research Test. The Dictionary User Profile Form was aimed at obtaining information about the dictionary users, i.e. their mother tongue, how long they have been studying English and their grades in grammar school (cf. 2.1 Test Subjects). The next few questions concentrated on the frequency of use of monolingual dictionaries, on the frequency of looking up grammatical information, on the types of grammatical information they most often look up and on whether they consult the front matter in order to check grammatical codes or abbreviated phrases they do not understand.

The Dictionary Research Test concentrated on the respondents’ abilities to decipher the grammatical codes included in five leading British monolingual learners’ dictionaries: COBUILD4, OALD6, CALD2, LDOCE4, and MED1. It consisted of two tasks. In both tasks the respondents were subdivided into five groups depending on the dictionary tested. Thirty-two students (16 from the FA and 16 from the FE) were given ten grammatical codes or abbreviated phrases from MED1, 32 (15 from the FA and 17 from the FE) from OALD6, 31 (15 from the FA and 16 from the FE) from LDOCE, 36 (19 from the FA and 17 from the FE) from COBUILD4, and 31 (15 from the FA and 16 from the FE) from CALD2. In Task 1, the students were supposed to explain the code or the abbreviated phrase taken from the above-mentioned dictionaries. It was not necessary for them to use the appropriate terminology; they could also explain in their mother tongue or provide an example. In Task 2, the same codes or abbreviated phrases were included together with the explanations taken from the front matter of each dictionary tested. In this task, the students had to indicate whether or not they understood the explanation and consequently the code or the abbreviated phrase.

2.3 Procedure of data collection

For the purpose of this study, data were collected by means of a questionnaire. Test subjects were given the questionnaire, and the researchers explained what they had to do. The respondents were supposed to complete the questionnaire in 45 minutes. The respondents’ answers were appropriately coded and prepared for a statistical analysis using the Microsoft Excel program. Standard statistical methods were used for the data processing, which was carried out by SPSS for Windows, version 11.

3. USERS’ HABITS CONCERNING THE RETRIEVAL OF GRAMMATICAL INFORMATION
Before testing the students' actual skills in retrieving grammatical information from EFL dictionaries, we wanted to obtain basic information about their everyday use of dictionaries. That is why the Dictionary User Profile Form included additional questions to give insight into the students' dictionary habits. First of all, we enquired about the frequency of use of monolingual dictionaries. The results show that 40.1% of the test subjects only rarely use a monolingual dictionary; 32.7% evaluated their use of dictionaries as 'frequent'; 21% are regular dictionary users, and only 5.6% do not use a monolingual dictionary at all (0.6% provided no answer). This question was aimed at getting information about the general use of monolingual dictionaries, whereas the next question concentrated on the frequency of consulting monolingual dictionaries to obtain grammatical information. The results were far from being encouraging, since only 3.1% of the test subjects regularly use a dictionary to find grammatical information about the entry word. The majority of the respondents (i.e. 53.1%) rarely consult a dictionary when faced with grammatical problems, 27.2% do that frequently, and 16.7% never consult a dictionary to solve grammatical dilemmas.

Those students who use the monolingual learners' dictionary to find grammatical information were asked to list some types of grammatical information they most frequently check in a dictionary. The answers that the students gave included: countability (40.7%), prepositions (25.2%), part of speech (17.8%), verb forms (16.3%), plural forms (14.8%), transitivity (12.6%), usage (3.7%), and other grammatical information (13.3%) such as articles, verb patterns, the use of the active or passive voice, and information about agreement between a noun and a verb. The results show that countability is by far the most common grammatical information that is checked in dictionaries. All other types of information are far less commonly looked up in dictionaries. What is more, as much as 45.6% of the students listed various types of non-grammatical information, such as collocations, idioms, register and style labels, pronunciation, spelling, and definitions. The question can be asked why such a high percentage of the students listed non-grammatical information. One reason may be that the respondents did not consider grammar alone but rather enumerated any piece of information they most often look up in dictionaries. Another possible reason could be that they use a dictionary only to obtain the most basic information (i.e. meaning, spelling, and pronunciation) and neglect a very important information category that all EFL dictionaries include, namely grammar. Unfortunately, spoken communication with the students reveals that many of them are not even aware of the fact that a dictionary includes grammar at all. As has been mentioned, when consulting a dictionary to solve grammatical problems, the students most frequently enumerate countability. This may be explained by the fact that they encounter the codes U (= uncountable) and C (= countable) at a very early stage of learning English, since many beginners' textbooks contain exercises in which students have to distinguish between countable and uncountable nouns. The results obtained for this question give cause for concern, since they are indicative of users' unawareness of grammatical information in dictionaries.

The last question in the Dictionary User Profile Form enquired whether the respondents use the front matter where all the codes are explained to check an unknown code that they encounter in a dictionary. We believe that this is a very important question because the
answers show to what extent dictionary users are willing to give careful study to unknown
codes. Worryingly, only 21.6% of the respondents regularly check an unknown code; 29.6%
often check it; as much as 39.5% check it only rarely, and 9.3% never check it. The results
are far from being satisfactory, since they may lead us to conclude that even if dictionary
users notice the code, they do not bother at all to decipher it let alone to understand it.

4. RESULTS OF THE DICTIONARY RESEARCH TEST

4.1 Results of Task 1

If we first consider the results separately for the two groups of respondents (N = 80 in
the group of FA students and N = 82 in the group of FE students) regardless of the dictionary
used, we can see that the average number of correctly deciphered codes in the group of FA
students is 6.96 (SD = 1.99), whereas the average number of correctly deciphered codes
in the group of FE students is 3.93 (SD = 2.20) – each student had to explain ten codes
from one of the five dictionaries tested. The minimum number of correct answers in the FA
group amounts to 0.00 and the maximum number of correctly understood codes in the same
group is as much as 10.00, whereas among the FE students the minimum number of correct
responses is also 0.00 and the maximum number is 8.00. In order to test the differences in
the success of the two groups, we performed a separate analysis of variance (ANOVA) on
the data of FA and FE students. Statistically, the number of correctly deciphered codes was
significantly higher among the FA students compared to results for respondents from the FE
(F = 83.43, p = 0.00).

It is, however, necessary to compare the results by groups and by dictionaries to see
whether the differences between the groups of respondents are statistically significant in
relation to the dictionary used. Regarding the understanding of the given codes, Table 1
summarizes the results of correct student answers in this task. The entries in this table are
mean values for correct student explanations of codes, standard deviation, and minimum and
maximum number of correct answers.

Table 1: Mean numbers, standard deviations and minimum/maximum numbers of correctly
explained codes by dictionaries and by groups.

<table>
<thead>
<tr>
<th>Dict.</th>
<th>Resp.</th>
<th>Mean</th>
<th>SD</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MED1</td>
<td>FA (N = 16)</td>
<td>8.69</td>
<td>1.40</td>
<td>5.00</td>
<td>10.00</td>
</tr>
<tr>
<td></td>
<td>FE (N = 16)</td>
<td>5.88</td>
<td>1.54</td>
<td>3.00</td>
<td>8.00</td>
</tr>
<tr>
<td>OALD6</td>
<td>FA (N = 15)</td>
<td>8.00</td>
<td>1.65</td>
<td>4.00</td>
<td>10.00</td>
</tr>
<tr>
<td></td>
<td>FE (N = 17)</td>
<td>4.18</td>
<td>2.60</td>
<td>0.00</td>
<td>8.00</td>
</tr>
<tr>
<td>LDOCE6</td>
<td>FA (N = 15)</td>
<td>6.73</td>
<td>1.98</td>
<td>0.00</td>
<td>8.00</td>
</tr>
<tr>
<td></td>
<td>FE (N = 16)</td>
<td>3.47</td>
<td>1.85</td>
<td>0.00</td>
<td>7.00</td>
</tr>
<tr>
<td>COBUILD4</td>
<td>FA (N = 19)</td>
<td>6.32</td>
<td>1.45</td>
<td>4.00</td>
<td>8.00</td>
</tr>
<tr>
<td></td>
<td>FE (N = 17)</td>
<td>2.71</td>
<td>1.83</td>
<td>0.00</td>
<td>6.00</td>
</tr>
<tr>
<td>CALD2</td>
<td>FA (N = 15)</td>
<td>5.13</td>
<td>1.46</td>
<td>2.00</td>
<td>8.00</td>
</tr>
<tr>
<td></td>
<td>FE (N = 16)</td>
<td>3.50</td>
<td>1.83</td>
<td>0.00</td>
<td>7.00</td>
</tr>
</tbody>
</table>
As can be seen from the results, the FA students performed much better than the respondents from the FE group, since the mean number of correct answers in all subgroups is higher in the FA group (ranging from 8.69 in MED1 to 5.13 in CALD2) in comparison with figures for the FE group (from 5.88 in MED1 to 2.71 in COBUILD4). In order to test the differences in the success of both groups of respondents using different dictionaries, we performed separate ANOVAs on the data of the FA and FE students for each dictionary. The results show that the FA students were much more successful than the FE students regardless of the dictionary used, since in all five dictionaries the differences between the two groups of respondents were statistically significant (MED1: F = 29.12, p = 0.00; OALD6: F = 23.86, p = 0.00; LDOCE6: F = 21.83, p = 0.00; COBUILD4: F = 43.38, p = 0.00; CALD2: F = 7.51, p = 0.01).

We were also interested in finding out whether there is a statistically significant difference between different dictionaries used by one group of respondents. The results show that in both groups this difference is statistically significant (FA students: F = 12.09, p = 0.00; FE students: F = 5.99, p = 0.00). These results prompted us to perform separate ANOVAs to test the difference between different pairs of dictionaries in order to see whether there are any statistically significant differences between them. The results for Task 1 for both groups of respondents together show that there are statistically significant differences between MED1 and LDOCE4 (p = 0.00) as well as between MED1 and COBUILD4 (p = 0.00) and MED1 and CALD2 (p = 0.00). There is, however, no statistically significant difference between MED1 and OALD6 (p = 0.34). The comparison of OALD6 and LDOCE4 (p = 0.91) and that of OALD6 and COBUILD4 (p = 0.35) show no statistically significant differences, whereas the difference between OALD6 and CALD2 only approaches significance (p = 0.08). The comparisons between LDOCE4 and COBUILD4 and between LDOCE4 and CALD2, as well as the comparison between COBUILD4 and CALD2 show no statistically significant difference.

The difference between different dictionaries used by the FA group was also taken into consideration and the results show that there are statistically significant differences between MED1 and LDOCE4 (p = 0.04), between MED1 and COBUILD4 (p = 0.00), and between MED1 and CALD2 (p = 0.00). If we compare the difference between OALD6 and COBUILD4 and between OALD6 and CALD2, we can observe a statistically significant difference (p = 0.04 and p = 0.00 respectively), whereas there are no statistically significant differences between other dictionaries. In the group of FE students the only statistically significant differences in Task 1 can be observed if we compare MED1 and LDOCE4 (p = 0.00), MED1 and COBUILD4 (p = 0.00), and MED1 and CALD2 (p = 0.00). The comparisons of other dictionaries yield no statistically significant results.

4.2 Results of Task 2

As far as the success of the explanations provided in different dictionaries is concerned, statistically significant differences can be observed in both groups of respondents. The average number of explanations understood by the FA respondents is 8.64 (SD = 1.29),
whereas in the group of FE students the average number of correctly understood explanations amounts to 7.24 (SD = 1.85). The minimum number of explanations that posed no problems for the FA students was 4.00, and the maximum number of explanations understood by the same group of respondents was 10.00. In the group of FE students the minimum number of explanations understood by the respondents is 0.00, the maximum number being 10.00. The number of explanations that were understood by the FA respondents shows statistically significant differences in comparison to responses in the FE group (\(F = 30.87, p = 0.00 \)).

Table 2 summarizes the results of Task 2. The entries in this table are mean values for students’ understanding of codes, standard deviation, and minimum and maximum number of explanations understood by the respondents.

Table 2: Mean numbers, standard deviations and minimum/maximum numbers of correctly understood explanations by dictionaries and by groups.

<table>
<thead>
<tr>
<th>Dict.</th>
<th>Resp.</th>
<th>Mean</th>
<th>SD</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MED1</td>
<td>FA (N = 16)</td>
<td>9.06</td>
<td>1.18</td>
<td>7.00</td>
<td>10.00</td>
</tr>
<tr>
<td></td>
<td>FE (N = 16)</td>
<td>8.06</td>
<td>1.06</td>
<td>6.00</td>
<td>9.00</td>
</tr>
<tr>
<td>OALD6</td>
<td>FA (N = 15)</td>
<td>8.93</td>
<td>0.96</td>
<td>7.00</td>
<td>10.00</td>
</tr>
<tr>
<td></td>
<td>FE (N = 17)</td>
<td>7.53</td>
<td>2.35</td>
<td>1.00</td>
<td>10.00</td>
</tr>
<tr>
<td>LDOCE6</td>
<td>FA (N = 15)</td>
<td>8.60</td>
<td>1.06</td>
<td>7.00</td>
<td>10.00</td>
</tr>
<tr>
<td></td>
<td>FE (N = 16)</td>
<td>7.81</td>
<td>1.22</td>
<td>6.00</td>
<td>10.00</td>
</tr>
<tr>
<td>COBUILD4</td>
<td>FA (N = 19)</td>
<td>7.84</td>
<td>1.54</td>
<td>4.00</td>
<td>10.00</td>
</tr>
<tr>
<td></td>
<td>FE (N = 17)</td>
<td>5.29</td>
<td>1.79</td>
<td>0.00</td>
<td>8.00</td>
</tr>
<tr>
<td>CALD2</td>
<td>FA (N = 15)</td>
<td>8.93</td>
<td>1.22</td>
<td>6.00</td>
<td>10.00</td>
</tr>
<tr>
<td></td>
<td>FE (N = 16)</td>
<td>7.63</td>
<td>0.96</td>
<td>6.00</td>
<td>9.00</td>
</tr>
</tbody>
</table>

Considering the mean value of the explanations understood by the test subjects, we can see that the average number of explanations understood by the FA students exceeds the average number of the explanations understood by the FE students in all five dictionaries tested, but the differences are not as significant as in the previous task (the range in the FA group is from 9.06 in MED1 to 7.84 in COBUILD4, while in the FE group the range is from 8.06 in MED1 to 5.29 in COBUILD4). The ANOVAs were performed on the data obtained from the students’ responses concerning the understanding of the explanation of the code provided. The differences between groups were statistically significant in MED1 (\(F = 6.34, p = 0.02 \)), OALD6 (\(F = 4.66, p = 0.04 \)), COBUILD4 (\(F = 21.06, p = 0.00 \)), and in CALD2 (\(F = 11.08, p = 0.00 \)), whereas in LDOCE6 the difference only approaches significance (\(F = 3.66, p = 0.07 \)). Among the dictionaries, COBUILD4 seems to have the most difficult explanations for both groups of respondents, whereas the results obtained for the other four dictionaries do not differ much.

Separate ANOVAs were performed to find out whether there is a statistically significant difference between different dictionaries used by one group of respondents regarding the explanations of codes provided in each dictionary. The results show that in both groups this difference is statistically significant (FA students: \(F = 2.92, p = 0.27 \); FE students: \(F = 2.92, p = 0.27 \)).
A more detailed analysis was performed showing that there are statistically significant differences between pairs of dictionaries used by both groups of respondents together. Statistically significant differences were obtained between MED1 and COBUILD4 (p = 0.00), between OALD6 and COBUILD4 (p = 0.02), between LDOCE4 and COBUILD4 (p = 0.00), and between COBUILD4 and CALD2 (p = 0.00). The comparisons between other dictionaries yielded no statistically significant results.

In this task, however, the dictionaries were equally successful in providing the explanations of the codes in the group of FA students, since no statistically significant differences can be observed. In the group of FE students only four comparisons yield statistically significant results, namely those between MED1 and COBUILD4 (p = 0.00), between OALD6 and COBUILD4 (p = 0.04), LDOCE4 and COBUILD4 (p = 0.00), and between COBUILD4 and CALD2 (p = 0.00).

5. DISCUSSION

Generally speaking, the results indicate that some codes or abbreviated phrases are more easily understood than others, and with a high degree of certainty it can be claimed that the understanding of the code or the abbreviated phrase, and thus its usefulness, depends on the code or abbreviated phrase itself rather than on the dictionary. In assessing the success of the respondents in deciphering the codes, MED1 proves to include codes that are most transparent for both groups of test subjects, and OALD6 also appears to be fairly user-friendly in this respect. COBUILD4, on the other hand, includes the most complicated codes for the FE students, whereas CALD2 is the least successful in the group of FA students. Why do COBUILD4 and CALD2 yield the worst results? As far as COBUILD4 is concerned, it has to be stressed that its coding system is much too complicated and much too sophisticated to be of any great use for the majority of its intended users. Apart from that, the codes are included in the Extra column. Many studies conducted so far have established that this feature does not seem to function as a guiding device nor as a main source of productive information for users (Bogaards and van der Kloo 2001: 118, Harvey and Yuill 1997), and the results of our research confirm these findings. In CALD2, four codes consisting of just one letter (i.e. ‘L’ = linking verb (followed by an adjective or noun); ‘M’ = phrasal verb with a particle that can come before or after the object; ‘R’ = reflexive; ‘S’ = singular) cause major problems for deciphering, but when the students read the explanations, they knew quite well what the codes meant (with the exception of ‘M’ where even the explanation was not very informative). It can be concluded that a one-letter code is not self-explanatory, thus not very useful.

The results also show that the FA students (i.e. English majors) were much more successful than the FE students (i.e. general dictionary users) regardless of the dictionary used, since in all five dictionaries the differences between the two groups of respondents were statistically significant. These results confirm our initial hypothesis that the FA students, who are well-versed in grammar, would perform much better than the FE students, who have an average knowledge of English grammar and of grammatical terminology. Worryingly, the results for the FE students show that, except in MED1, the average number of correct answers
in all other dictionaries is below 50%; in COBUILD4, where the result is the worst, less than 3 correctly deciphered codes. It should, however, be stressed that this group of respondents represents a sample of the population which is much more numerous than that representing (future) professional users. Despite the tendencies towards simplification of grammatical codes that can be observed in the latest editions of monolingual learners’ dictionaries, it can still be claimed that many of them are still too complicated for an average dictionary user. It is essential that a code is as transparent, simple and self-explanatory as possible if we want users to understand it and to make use of it.

6. CONCLUSION

The dictionary is the most basic tool for anyone learning a foreign language. It is, therefore, necessary for any user to know what it contains and how to retrieve specific types of information. Unfortunately, the results of the present study reveal a lack of dictionary skills. These poor levels of dictionary reference skills can be attributed to a lack of systematic training in dictionary use. This shows the need for teaching and practising the use of the dictionary at school to a much larger extent than seems to be common practice. It has to be pointed out that teachers are becoming more aware that the teaching of reference skills needs to be tackled, though many are still unaware of what a monolingual learners’ dictionary contains. Effective use of monolingual learners’ dictionaries calls for special competence, and this needs to be systematically taught. School curricula still do not put sufficient emphasis on the various dictionary using skills, although constant practice in these skills in language classes seems essential. Teaching should be supported by materials designed to increase dictionary awareness and to develop reference skills, such as the various workbooks that accompany monolingual dictionaries.

REFERENCES

Dictionaries

Other literature

Appendix I

The Dictionary User Profile Form was produced in Slovene, so that respondents could complete the form in their native language. The questionnaire here is a translation of the original form.

DICTIONARY USER PROFILE FORM

The aim of this questionnaire is to discover how dictionaries can be improved. You can help us by filling in this questionnaire. The questions are about monolingual (i.e. English-English) dictionaries.

1. What is your native language? ________________________________

2. How many years have you been learning English for? ____________

3. What was your average grade in English in grammar school? ________

Appendix II

The Dictionary Research Test was produced in Slovene to ensure that participants in the project would read the questions in their own language. The questionnaire here is a translation of the Slovene original.

Task 1: The following grammatical codes can be found in Oxford Advanced Learner’s Dictionary (6th edition). Please write down what each code means (you can explain it or provide an example).

1. pp
2. pt
3. [VN]
4. [VN+adv./prep.]
5. [V–ADJ]
6. [VN–ADJ]
7. [V(that)]
8. [V wh-]
9. [VN -ing]
10. [VN speech]

Task 3: The codes from the previous task are accompanied by the explanations that can be found in the introductory part of the dictionary. Please indicate whether the explanation is clear enough for you to make use of it when using English actively.
1. **pp**
 a. understand
 b. don't understand

2. **pt**
 a. understand
 b. don't understand

3. **[VN]**
 a. understand
 b. don't understand

4. **[VN+adv/prep]**
 verb + noun phrase + adverb or prepositional phrase
 a. understand
 b. don't understand

5. **[V-ADJ]**
 verb + adjective
 a. understand
 b. don't understand

6. **[VN-ADJ]**
 verb + noun phrase + adjective
 a. understand
 b. don't understand

7. **[V(that)]**
 verb + that clause
 a. understand
 b. don't understand

8. **[V wh-]**
 verb + wh-clause
 a. understand
 b. don't understand

9. **[VN -ing]**
 verb + noun phrase + -ing phrase
 a. understand
 b. don't understand

10. **[VN speech]**
 verb + noun phrase + direct speech
 a. understand
 b. don't understand

OR: Codes from Longman Dictionary of Contemporary English (4th edition).

1. **[linking verb]**
2. **[always + adv/prep]**
3. **[not in progressive]**
4. **[no comparative]**
5. **[only before noun]**
6. **[not before noun]**
7. **[only after noun]**
8. **[sentence adverb]**
9. **[+adj/adv]**
10. **[also + plural verb BrE]**

Codes from LDOCE4 with explanations

1. **[linking verb]**
 a. understand
 b. don't understand

2. **[always + adv/prep]**
 shows that a verb must be followed by an adverb or a preposition
 a. understand
 b. don't understand
3. [not in progressive] shows that a verb is not used in the progressive form, that is, the -ing form after ‘be’
 a. understand
 b. don’t understand

4. [no comparative] shows that an adjective is not used in the comparative or superlative form, that is, not with -er and -est, or ‘more’ and ‘most’
 a. understand
 b. don’t understand

5. [only before noun] shows that an adjective can be used only before a noun
 a. understand
 b. don’t understand

6. [not before noun] shows that an adjective cannot be used before a noun
 a. understand
 b. don’t understand

7. [only after noun] shows that an adjective is used only immediately after a noun
 a. understand
 b. don’t understand

8. [sentence adverb] shows that an adverb modifies a whole sentence
 a. understand
 b. don’t understand

9. [+adj/adv] shows that an adverb of degree is used before adjectives and adverbs
 a. understand
 b. don’t understand

10. [also plural verb BrE] shows that a group noun can take a plural verb in British English
 a. understand
 b. don’t understand

OR: Codes from Macmillan English Dictionary (1st edition).

1. [linking verb]
2. [auxiliary verb]
3. [only before noun]
4. [never before noun]
5. [+ (that)]
6. [usually passive]
7. [usually progressive]
8. [in imperative]
9. [in infinitive]
10. [in negatives or questions]

Codes from MED1 with explanations

1. [linking verb] verbs that are followed by a noun or adjective complement describing the subject
 a. understand
 b. don’t understand
2. **[auxiliary verb]** verbs 'be', 'have', and 'do' when they are used with other verbs to form questions, show their tense, etc
 a. understand
 b. don’t understand

3. **[only before noun]** adjectives that can only be used before a noun
 a. understand
 b. don’t understand

4. **[never before noun]** adjectives that can never be used before a noun
 a. understand
 b. don’t understand

5. **[+ (that)]** can be followed by a clause beginning with 'that' but you can miss out the 'that'
 a. understand
 b. don’t understand

6. **[usually passive]** usually used in the passive
 a. understand
 b. don’t understand

7. **[usually progressive]** usually used in the progressive
 a. understand
 b. don’t understand

8. **[in imperative]** usually used in the imperative
 a. understand
 b. don’t understand

9. **[in infinitive]** usually used in the infinitive
 a. understand
 b. don’t understand

10. **[in negatives or questions]** usually used in negative sentences or questions
 a. understand
 b. don’t understand

OR: Codes from Collins Cobuild English Dictionary for Advanced Learners (4th edition).

1. PREP-PHRASE
2. adj-compar
3. N-COUNT-COLL
4. N-VAR
5. V-RECIPI
6. V-LINK
7. V-PASSIVE
8. v-cont
9. imper
10. pron-refl

Codes from COBUILD4 with explanations

1. PREP-PHRASE phrasal preposition
 a. understand
 b. don’t understand

2. adj-compar comparative form
 a. understand
 b. don’t understand

3. N-COUNT-COLL collective count noun
<table>
<thead>
<tr>
<th></th>
<th>a. understand</th>
<th>b. don’t understand</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>N-VAR</td>
<td>variable noun</td>
</tr>
<tr>
<td></td>
<td>a. understand</td>
<td>b. don’t understand</td>
</tr>
<tr>
<td>5.</td>
<td>V-RECIP</td>
<td>reciprocal verb</td>
</tr>
<tr>
<td></td>
<td>a. understand</td>
<td>b. don’t understand</td>
</tr>
<tr>
<td>6.</td>
<td>V-LINK</td>
<td>link verb</td>
</tr>
<tr>
<td></td>
<td>a. understand</td>
<td>b. don’t understand</td>
</tr>
<tr>
<td>7.</td>
<td>V-PASSIVE</td>
<td>passive verb</td>
</tr>
<tr>
<td></td>
<td>a. understand</td>
<td>b. don’t understand</td>
</tr>
<tr>
<td>8.</td>
<td>v-cont</td>
<td>continuous verb</td>
</tr>
<tr>
<td></td>
<td>a. understand</td>
<td>b. don’t understand</td>
</tr>
<tr>
<td>9.</td>
<td>imper</td>
<td>imperative</td>
</tr>
<tr>
<td></td>
<td>a. understand</td>
<td>b. don’t understand</td>
</tr>
<tr>
<td>10.</td>
<td>pron-refl</td>
<td>reflexive pronoun</td>
</tr>
<tr>
<td></td>
<td>a. understand</td>
<td>b. don’t understand</td>
</tr>
</tbody>
</table>

OR: Codes from Cambridge Advanced Learner’s Dictionary (2nd edition).

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>[always + adv/prep]</td>
</tr>
<tr>
<td>2.</td>
<td>[+ question word]</td>
</tr>
<tr>
<td>3.</td>
<td>[before n]</td>
</tr>
<tr>
<td>4.</td>
<td>[L]</td>
</tr>
<tr>
<td>5.</td>
<td>[M]</td>
</tr>
<tr>
<td>6.</td>
<td>[+ obj +n/adj]</td>
</tr>
<tr>
<td>7.</td>
<td>[+ obj + v-ing]</td>
</tr>
<tr>
<td>8.</td>
<td>[R]</td>
</tr>
<tr>
<td>9.</td>
<td>[S]</td>
</tr>
<tr>
<td>10.</td>
<td>[usually passive]</td>
</tr>
</tbody>
</table>

Codes from CALD2 with explanations

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>[always + adv/prep]</td>
</tr>
<tr>
<td></td>
<td>a. understand</td>
</tr>
<tr>
<td>2.</td>
<td>[+ question word]</td>
</tr>
<tr>
<td></td>
<td>a. understand</td>
</tr>
<tr>
<td>3.</td>
<td>[before n]</td>
</tr>
<tr>
<td></td>
<td>a. understand</td>
</tr>
<tr>
<td>4.</td>
<td>[L]</td>
</tr>
<tr>
<td></td>
<td>a. understand</td>
</tr>
<tr>
<td>5.</td>
<td>[M]</td>
</tr>
<tr>
<td></td>
<td>a. understand</td>
</tr>
</tbody>
</table>
UPORABNOST SLOVNIČNIH KOD V ENOJEZIČNIH SLOVARJIH ZA TUJCE

Povzetek

V vse enojezične slovarje za tujce so vključeni različni podatki, vendar raziskave kažejo, da jih uporabniki slovarjev ne znajo uporabljati v dovolj veliki meri. To velja tudi za slovnične informacije, ki smo jih preučevali v naši raziskavi, katere rezultati so predstavljeni v članku. Eksperimentalna raziskava je vključevala slovnične oznake, ki jih uporabljajo v petih vodilnih britanskih enojezičnih slovarjih za tujce. Testiranci so morali najprej skušati razvozlati oznake, nato pa smo testirali še njihovo razumevanje razlag oznak. V raziskavi sta sodelovali dve skupini testiranec, kajti ugotoviti smo želeli, ali obstajajo med skupinama testiranec kakšne razlike. Prav tako je bil naš cilj ugotoviti, ali se med testiranimi slovarji pojavljajo statistično pomembne razlike glede transparentnosti oz. uporabnosti slovničnih oznak.

Ključne besede: uporabniki slovarjev, enojezični slovarji za tujce, slovnične oznake, prijaznost do uporabnika